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ABSTRACT

Errors in the division of power by a variable-power divider using phase

shifters and a pair of 3-dB couplers are determined as a function of an incor-

rect setting of the phase shifters. The insertion phase, of the phase shift-

ers, is assumed to have a Gaussien distribution about the desired value and

the resultant probability distribution of the power division is calculated.

Curves are given for the probability that PA falls within a given error.

These curves are computed from the probability density function of PA which

is also shown graphically.
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Error Analysis of a Variable-Power Divider

A variable-power dividing four-port junction consisting of a magic "tee",

a 3-dB-short-slot coupler, and two latching-ferrite phase-shifters, as indi-

cated schematically in Fig. 1, has output signals given by the fo.liowing

equations:

01+02 +I
21)+42 4i

EA sin[-12-2 - 4J 2 +

1 +
E 4 e (2)

where i and 42 are the insertion phase shift of the latching-phase shifters.

These equations assume the magic tee and 3-dB coupler are perfect lossless

davices, an assumption that is reasonable in view of the comparative error in

establishing •i and

1Il- 6-166451
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Fig. 1. Variabl e-Power Divider.
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Equations (1) and (2) can be put in a somewhat simpler form if we assume

varies from- to 7r and varies from 0 to 2 that is has a minimum inser-
22

tion phase of 1 radians. In addition we let r = cI-$2-7r/2, and consider only
2~ 2

the po delivered to the output ports since the output signals are always

in phase (because we also assume the same insertion loss for each phase

shifter) and our interest centers on the device as a power divider. Hence

PA sn (3)A 2

and

P COS (4)B 2

The length, T, of a pulse applied to the ferrite phase shifter determines A
its insertion phase. The relationship between insertion phase and pulse

width is non-linear; it varies as a function of temperature and aging, and

each device is also somewhat different from all other "identical" devices. The

problem add:essed in this note concerns determining the error in PA and P

when a polynomial representation such as;

N
t = an* (5)

is used to set the phase shifters, in any variable power divider (VPD), to

obtain a desired division of power.

Toward this end let us first determine a method of obtaining (5), or its

inverse
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and what probability density function (pdf) we should assign to the dependent

variable. Although it is customary to determine T for a given power division

"by using (5) and (3), T is ultimately applied to the control equipment so as

to obtain the desired power division. Hence it is more practical to consider

T as the independent variable and use (5a) anr (3) or (4) to evaluate the

error in P and PB
A B,

In particular, let us determine the insertion phase, m of a large num-

ber of phase shifters sayM- 40 or more, (mu phase shifter number, n- drive pulse

duration) for a fin..te set of error free applied control pulses (Tit 2 ... 'N) and sev- wi

eral temperatures and frequencies in the operating range. Assuming • ,'for a partic-
mn

ular value of n 1, to have a Gaussian distribution about the mean value, 4i'

((/M) E •mi), the standard deviation ai and ii are computed. (In a
SM1m i 1

most exact analysis one would attempt to determine the actual frequency func-

tion, or pdf, but the assured Gaussion and perhaps a uniform distribution

should establish an interesting bound as will be discussed later.) The

values of and T are then fit to a pth degree polynomial by a suitable

regression analysis and the a of (Sa) are determined. It may also be usefuln

to determine the bmj in

b m (6)

3..........



in the same manner. Hence (5a) and (6', together with assumed Gaussian dis-

tribution, define the statistical performance of the phase shifters as a group.

For a Gaussian distribution of O() for fixed Ti, the linear combin-

ation

V- ( Z) - ( (m) (7)

is also a Gaussian distribution with mean " i - - and variance " 1

2 2 2
r 2 0£ + a 2

It remains to find the pdf of p, (u) , and then the probability that PA

lies between PA + A P and PA- AP Toward this end we recognize that the prob-
A A adA A'

ability density function of ý is given by

The relationship between PA' or PB and • is obtained from (3) and (4) and

rewritten here as

PA fI.. i cosi: 1 -PB (9a)
2 2B

PB =2 2 o•(b

The probability <P <x isgivenby
x2

Petx <tpA < x2 ] A PA(u)du (10)

x1
where w i and x2 are assumed values of P1

Sketching (8) and (9b) (see Fig. 2a and 2b),

B 2 2

The robbilty x1 <P A< x isgivn b



P(C)

Fig. 2a. Probability density function of •. Fig. 2b. Distribution of P

it is apparent that PA is a periodic function of n ha .btains a value less

than x for all • between -x + 2nir and & + 2niT where n is any integerx x
between -oo and P. 1ence from Figs. 2a and 2b we can write

CO +2n~r 1
P[P < X] p,(u)du (13)

a

-• +2n'rr
x

where from (9a)

x cos 1 l-2x] . (14) 15

If we limit • to the range 0_< • < Tr all interesting values of PA will be

obtained; i.e., 0 < PA< 1. We should also recognize that a in (8) is A 0.i.

"Consequently for 0 < & < r/2 (0 < x < 1/2), only the n - 0 term in (13) will

be significant. For 7r/2 < < 7T (1/2 < x < 1), the n 1 1 term must also be

taken into account. Specifically

P[PA < x] "udu (13a)

5



for 0 < x <2 and

21

P(PA < x] m,"p•(u)du + P,(u)du (13b)

0 E

for - < x < 1. Note that (13b) neglects the contribution for -E < < 0

and 2- < < 27r + E because they are negligible.

Recalling the definition

Pfx < PA < x + APA] d'

PA(X) Litmp AP(P[A<' ) (15) <
APA4 A

and using (13a), we have

dý x d(-E X)1
P(X) - pC(F,.) - 0 -2 <(16a)

Using (13b) we have

PA(x) dPr(.) - d2 ' <- .<_ 1 (16b)

From (14), we have

d___ 1 (17)

Ox

Substituting (17) and (8) into (16a) and (16b) we consider the combination

resulting from (16a) and (16b) to be

6



x x

2 2 -T 2 -- 22 \2

P x) e+ +1e +epzx /f•[ /x(l-x, j.(1),

It is clear that only the first term on the right hand side will contrib-

ute for 0 < T < 7r. The second term contributes when P. and • approach 0 and

the third term contributes only when •an-d ýx approach . As we would e~pect

PA(X) has its .taximum value for x • The probability density functio,

P(X) is sketched in Fig. 3 with P' - sin as a parameter.

A / A as aIarmeer 118J- 166471

t
P, P0.1 0~.05 P': 3.9
A '.A

0 1 0 K 1 0

Fig. 3. Probability density function.

Note that the pdf has singularities at x = 0 and 1. However, it is an

integrable singularity and the area under curves shown, over the range

0 < x < 1, is finite and equals 1 as it should..
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For example let us evaluate the area oiler a region (0,C) about the x 0 sing-

ularity, i.e.,

P A C~ rfPA(x)dx (t9)

0

where c ÷ 0. Using (18) we have

E+ e 1dx (20)

0

where we have set Ex 2rx (see (3.4)) and Vx(I-) - vx Rearranging (20)

_______ 
2 (x-p

2 2(x + V4 22
P[A< £]•e( e ~+ e adx. (21)1

For x -÷ 0 the numerator of the exponent can be approximated as indicated in
(22)

2 22 -2

0

[4•/l-2 3a2 32 5/)2 (23

ee+ e a

Now if • < < 2 (recall 0 < ( < ), the second and third terms (23) can be

neglected and

(22.)

2 2 -8
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(~2

P[P< 4V. (24)
Aa

Notice that (24) gives a finite probability indicating that integration over

the singularity at x - 0 does indeed give a finite value. With a - 0.1 and

S-0.2

P[PA < E] • 2vr-- (25)

where e < .001. Conversely P[P > E] - 1 - 1.5vF. This result will be
A

checked in the next section.

..nulative Distribution of PA

Using the foregoing expression (18), and using numerical integration,

x

P[PA < x] rPA(u)du (26)

0 1''=00 .5 .9 PA' is tei

was calculeted for a 0.05, 0.1 and 0.2 and PA 001, 0.5, 0.99. A the

desired value of PA; it is not necessarily the mean, or average, value of PA"

The results are shown in Figs. 4, 5 and 6. The P[P' - x e P < P' + x] isA A A

plotted versus magnitude of Ax - (PA - x) in Figs. 7, 8 and 9.

Notice that for P' - .01 (Fig. 4), which corresponds to • .2,

P[PA < .001] = .07 which agrees reasonably well with the approximate relation-

ship given by Eq. (25). It is also important to note the asymmetrical character of

the curves with respect to x' PA' - .01 the desired value of PA' For a '- .2

9



a 0.05

0.2

0. 
0.2

0.1

0.

0.90 0.51.0
x

Fig. 4. Cumulative distribution of P for PI 0.14
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L 0h~i~ . 1 -

0.5.1

00. 000.

0.3 0.4 0.s 0.60.

Fig. 5. Cumulative diotributiori of P for P 0.5

A A



1.0

va 0.2

00.

-~Il 1665O0
0 .20.04 0.06 03.00 0.1

Fig. 6. Cumulative distribution of P for P '0.99
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1.00.

0.1

+ 0,2

0
VI
CL
VI

,o

11860-651

ti I I I lI I

0 0.05 0.1

Ax

Fig. 7. Probabilit, of P for a given error in PA (F' - 0.01).
A A (A' 01)
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+ °0 2
0l 

0.2

VI 0.05
CL
VI 0,50 /

~~I I IA I 1 -1 1 1 1 1JI-
0,05 0.1 0.15 0.2

Fig. 8. Probability of PA or a given error in PA PA' - 0.5).
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1.0r

1 0.1

VIa.00

02•0.5

o 15

0 0.0:I I0.

Fig. 9. rrobability of P for a given error in P (P' 0.99).A A A



the mean value of PA' FA' is f 0.011O

The knee in the curves shown in Fig. 7 and Fig. 9 is due to the asymmetry

"in the cumulative distribution. In particular the difference in slope for

x > P' to that for x less than PA' causes the abrupt change in the slope of the

curves (Figs. 7 and 8) since they are computed from the cumulative distribu-

tion.

Uniform% Distributed Errors

Let us next assume that the errors in Eq. (5) or (5a) have a uniform

distribution instead of the previously assumed Gaussian distribution. It can

be shown that, if ý(T9) is distributed uniformly within T(TC) + •o

, = (r£)- 4(t m) will have a mean value i -; (P ) -
4 (Tm) and it will

have a triangular distribution between T, + 2d• In particular, the pdf be-

comes

p. - (1 + uo)12o -20 < u - • < 0

(28)

0 < u < 20

Using (13) and (14)
•x •xI

PEP A < X] - 2 I (2 0 -ý+u) du + c j(24 0 -C-u)du] (291
0 iI

when E < F (29a)

-X t, 240 0 1  0 if > 2%0. (29b)

If • < 2c0,0

16



Ext 0 (29c)

x{

1x~ lif C < 2ý0 -~ (29d)

- 0 if 4 > 200 " T (29e)
*x

whenE > 4
x

P[P < x] - - I (2 -:ý-u)du + P[P < sin2 (30)
A oý 20oA 2(3

where 4 < -- 2o which corresponds to x < Cos . It is also necessary that
0 0

S-< + 200. In order to calculate P[PA < x] when ir-20° < E < w, we can

use (29) for 4x < • and an appropriate modification of (30). Because this is

not a particularly interesting case (i.e., • > 7r - 2o) it will not be

treated here.

Integrating (29) and (30) requires attention to the conditions indicated.

Let us first consider those cases where 20 < • < r - 2ýo. For 4 < •, let
0 0Xj

4' =-4 20o; thenx 0

P[PA < x] " (x x (31)

For x>4
x

P [PA < x] - + (400 -• + •)(x-•"(31a)

When < 2•o, we have

Ix xPEPA < x] " (32a)
2e+

0

17
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for 0 < < and x < 200-C. There are two possible conditions to consider;
xa

. . 240-C and • > 200-&. Taking the latter case first

22-

P( < ]+& (32b)A2-o082o2

for 24o-ý < < and

P(PA <)x+ 1x2-"2] 3c
2~ -2)P[P A < x] 2 + 8•2 [2E' x (ýx-Vx +E 3c

for- : where "- 24) +*•-fo •< < x ' 0x

Now considering the case : < x we have

P[P < x] [40 2 -2 (32d)

4 0

for • < Ex < V' and

P[P < x] 1 [•,2 - 2+ 2t" x-x2 2 (32e)
A 84o2 x xxx

when •' < < <X X X

A plot of P[PA < x] for T - T/2 (PFA 0.5) and o 0.1 radian is

shown in Fig. 10. Notice the similarity between this curve and that for

a = .1 in Fig. 4. As should be expected, uniformly distributed errors with

a maximum value 0o , a, the RMS value of errors with a Gaussian distribution,

are more likely to produce the desired value of PA* This present analysis

shows the possible effects should the actual errors be distributed either as

*1 18
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;e-16 6- 1.6.5...

A 1.0

PAO'

00.02 0.04 0.06 0.06 0.1

Fig. 1.0. Cumulative disitribution of P for P 0.5.

A. I
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Gaussian or a finite uniform distribution. Using the foregoing analysis, it

is also interesting to note that for o 0.1 radian and iniformly distrib-

uted errors, an attempt to set PA < 0.01 will be suczessful only 50% of the

time.

Conclusions

Should the measured data show that the errors have a Gaussian distribu-

tion and they have an RMS error - 50 (f .1 radian) one can expect, from

Fig. 8 (P' - .99), that 80% of the time the power delivered to the desired

port (say port A) will be within 0.05 dB of the maximum power available. At

the same time the power delivered to P will be more than 17 dB below power

into the variable power divider. Similarly from Fig. 7, for equal power

division (P' - 0.5), 80% of the time the PA will be within 0.3 dB of the

desired value. From these examples we see that only when trying to minimize

PA (or PB does the variation of 4(T) e~fect the power division significantly.

Use of Eq. (32a), with • - 0 (PWA - 0), indicates that, with the assumed 5'

RMS error in ý, PA will be less than -30 dn (referred to the input power)

with a probability of 0.62. This operational performance may have question-

able value in a nulling nntenna when null depth greater than 20 dB is desired.
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